POST-SCISSION FISSION PHYSICS DATA

L. Bonneau for the LANL Nuclear Theory Group T-16

Nuclear Physics and Related Computational Science R&D for Advanced Fuel Cycles

Bethesda, MD, August 9-12, 2006

This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

NEED FOR NUCLEAR FISSION DATA

PROMPT FISSION DATA

- before decay of fission products ($\lesssim 10^{-7}$ s)
- neutron multiplicity → nuclear-reactor core reactivity
- mean energy release \rightarrow reactor power (poorly known experimentally as a function of E_n except for ²³⁸U)
- neutron spectrum → safeguards and transmutation
- fission-product yields → for transmutation issues (long-lived species) and fission theory modeling
- ternary fission fraction → He generation in fuel
- especially for minor actinides

DELAYED FISSION DATA

- neutron fraction → reactor safety
- neutron spectrum → safeguards and transmutation

EFFORTS IN FISSION THEORY MODELING

Necessary to analyze experimental data and when data are unavailable. In collaboration with experimentalists.

POST-SCISSION FISSION PROCESS MODELING

- neutron and γ sequential emission from fission fragments \Rightarrow multiplicity distributions and spectra
- fission-fragment properties: kinetic energy, excitation energy ⇒ energy deposition and energy release; most probable fragmentation; fragment spins
- energy partition in fragments still unknown

FISSION CROSS SECTIONS MODELING

- multi-humped fission barrier and multi-modal fission ⇒ penetrabilities, level densities at saddle points
- width-fluctuation averaging in intermediate structure ⇒ reducing factor of fission cross sections

EFFORTS IN FISSION THEORY MODELING

RECENT RESULTS

• Prompt neutron multiplicity distribution for ^{235}U ($E_n=0.53$ MeV):

S. Lemaire et al., PRC72 (2005)

EFFORTS IN FISSION THEORY MODELING

RECENT RESULTS

Prompt fission energy release for ^{235,238}U and ²³⁹Pu

D. Madland, NPA772 (2006)

EFFORTS IN DELAYED NEUTRON EMISSION MODELING

RECENT RESULTS

Delayed neutron spectrum for precursor ¹⁴⁷Cs

T. Kawano, P. Möller and W. B. Wilson, LALP-06-100

HIGH-PERFORMANCE COMPUTING

NEED FOR LARGE COMPUTER POWER

- detailed description of fission decay chain: Monte Carlo calculation of neutron and γ spectra and multiplicity distributions as a function of E_n for a number of actinides
- microscopically grounded fission transmission coefficients: realistic saddle points and fission paths in at least 5D potential-energy surfaces
 Example: Hartree-Fock calculation of the PES of 1 actinide at least 10⁵ gridpoints × 1 CPU hour → 10⁶ CPU hours
 BUT NON INDEPENDENT GRIDPOINTS
- sensitivity studies for covariance data